A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants.
نویسندگان
چکیده
Many plants synthesize and accumulate proline in response to osmotic stress. Despite the importance of this pathway, however, the exact metabolic route and enzymes involved in the synthesis of proline in plants have not been unequivocally identified. We report here the isolation of a mothbean (Vigna aconitifolia) cDNA clone encoding a bifunctional enzyme, delta 1-pyrroline-5-carboxylate synthetase (P5CS), with both gamma-glutamyl kinase and glutamic-gamma-semialdehyde dehydrogenase activities that catalyzes the first two steps in proline biosynthesis. The two enzymatic domains of P5CS correspond to the ProB and ProA proteins of Escherichia coli and contain a leucine zipper in each domain, which may facilitate inter- or intramolecular interaction of this protein. The Vigna P5CS enzyme activity is feedback regulated by proline but is less sensitive to end-product inhibition than is the E. coli gamma-glutamyl kinase. The P5CS gene is expressed at high levels in Vigna leaves and is inducible in roots subjected to salt stress, suggesting that P5CS plays a key role in proline biosynthesis, leading to osmoregulation in plants.
منابع مشابه
بیان فراوان ژن Δ1 – پرولین- 5-کربوکسیلات سنتتاز( p5cs ) ، با هدف افزایش مقاومت به تنشهای اسموتیک در گیاه تراریخت توتون ( Nicotiana tabacum cv. Xanthi )
Proline as a key osmoregulating solute in plants plays an overriding role in osmotic pressure adjustment of the cell under water stress conditions. In plant, a bifunctional enzyme delta-1-pyrroline-5-carboxylate synthetase (p5cs) promotes and directs proline synthesis during drought stress conditions. The activity of this enzyme is strongly induced to increase proline concentration within the c...
متن کاملبیان فراوان ژن Δ1 – پرولین- 5-کربوکسیلات سنتتاز( p5cs ) ، با هدف افزایش مقاومت به تنشهای اسموتیک در گیاه تراریخت توتون ( Nicotiana tabacum cv. Xanthi )
Proline as a key osmoregulating solute in plants plays an overriding role in osmotic pressure adjustment of the cell under water stress conditions. In plant, a bifunctional enzyme delta-1-pyrroline-5-carboxylate synthetase (p5cs) promotes and directs proline synthesis during drought stress conditions. The activity of this enzyme is strongly induced to increase proline concentration within the c...
متن کاملTransgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress.
Legume root nodule nitrogen-fixing activity is severely affected by osmotic stress. Proline accumulation has been shown to induce tolerance to salt stress, and transgenic plants over-expressing Delta(1)-pyrroline-5-carboxylate synthetase (P5CS), which accumulates high levels of proline, display enhanced osmotolerance. Here, we transformed the model legume Medicago truncatula with the P5CS gene ...
متن کاملCrystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum.
The bifunctional proline catabolic flavoenzyme, proline utilization A (PutA), catalyzes the oxidation of proline to glutamate via the sequential activities of FAD-dependent proline dehydrogenase (PRODH) and NAD(+)-dependent Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains. Although structures for some of the domains of PutA are known, a structure for the full-length protein has no...
متن کاملImproved shoot regeneration protocol for canola explants and pre-assessment of salinity tolerance in canola transgenic plants
Regeneration of explants plays a significant role in plant transformation. Explant type, hormonal concentration, and pre-culturing period are important in transformation efficiency. To get an efficient transformation of canola and optimize regeneration conditions, different explants along with different culture media were studied. Four canola varieties were used to evaluate regeneration ability...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 89 19 شماره
صفحات -
تاریخ انتشار 1992